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Abstract

Experiments on oscillating flow in a 2-D entrance/exit geometry with

rounded edges are presented. It is shown that the minor losses are a function

of three independent dimensionless parameters including the dimensionless

edge radius. The effect of each of these parameters on the time-averaged

pressure difference across the area change and acoustic power dissipation is

explored by holding two parameters fixed while varying the third. Evidence is

presented that the losses due to oscillatory flow in this geometry are smaller

than would be expected from commonly accepted values for steady flow in

similar geometry.

PACS numbers: 43.25.Qp, 43.25.Nm, 47.32.Ff, 47.60.+i
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I. INTRODUCTION

When a fluid flows through a system, energy is lost to viscous dissipation effects including

boundary layer turbulence and random motions in separated flows. These losses are often

called head losses, since they result in a drop in pressure head along the flow path. When

energy is dissipated in pipe bends, valves, expansions, entrances, or anything other than a

length of straight pipe, the term “minor loss” is used.

The effects of minor losses in oscillating flow can be either detrimental or advantageous.

While minor losses in steady flow are manifested by a loss of flow work (or flow energy),

minor losses in oscillating flow dissipate acoustic power and create time-averaged pressure

gradients. The time-averaged pressure gradient has been used to counteract streaming flows

in a thermoacoustic Stirling refrigerator1 and engine2. On the other hand, minor losses can

result in significant power dissipation in such refrigerators and engines, and therefore may

need to be minimized.

Although extensive tables3 of losses for steady flow are available, few such data exist for

oscillatory flow in any geometry, despite the fact that abrupt changes in geometry are ubiq-

uitous in Stirling engines, thermoacoustics, and respiratory flows. Current understanding

relies mostly on the assumption that the losses due to oscillatory flow can be computed by

cycle averaging the losses based on steady flow data. For example, it has been assumed that

the minor losses for the entrance/exit geometry in Fig. 1 are the same as for steady flow

through a sudden expansion (for the outward flow) and through an entrance (for the inward

flow).

Currently, at least three other research efforts are addressing oscillatory losses in sud-

den area changes. Wakeland and Keolian4 have recently reported minor loss coefficients

for oscillatory flow through a sharp-edged area change based on the steady-flow theory

referenced below but using theoretical laminar oscillatory flow profiles. Morris et al.5 are

numerically studying oscillating flow in a sharp-edged two-dimensional transition with finite

area ratio, while Petculescu and Wilen6 have built an apparatus that provides very accurate
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pressure/flow relationships for small flow components and have recently used this apparatus

to measure the losses associated with axisymmetric acoustic diodes7. Knowledge of oscillat-

ing flow losses in other flow elements (pipe bends, etc.) is also necessary to minimize such

losses and predict their value. In the current work, we study minor loss effects for purely

oscillatory flow through a two-dimensional transition with a rounded edge and an infinite

area ratio.

In steady flow through abrupt changes in geometry, minor losses and are commonly

accounted for by use of a minor loss coefficient:

K =
ρgH
1
2
ρu2

(1)

where H is the head loss through the component, ρ is the fluid density, g is the acceleration

due to gravity, and u is the average velocity at the smallest cross-sectional area. The minor

loss coefficient can be thought of as the ratio of dissipated flow energy per unit mass (∆p/ρ)

to the maximum kinetic energy per unit mass in the component.

One of the few minor loss coefficients that can be theoretically determined is the “Borda-

Carnot” coefficient that for steady flow through a sharp-edged expansion8. The common

assumption of spatially uniform channel flow results in K = 1 for flow out of the channel into

infinite space. Any departure from uniform flow results in a larger loss coefficient, as large

as 1.5 for fully developed laminar channel flow. No data for flow from a rounded sudden

expansion are known to the authors, although it seems to be commonly assumed that this

geometry has similar losses to a sharp-edged expansion9.

Steady entrance flow through a rounded 2-D opening has a minor loss coefficient that

decreases with increasing r/h, where r is the edge radius and h is the channel width (see

Fig. 1). For r/Dh > 0.2, where Dh is the hydraulic diameter, K becomes constant at 0.033.

In the current study, r/Dh > 0.2 for all cases.

This paper will discuss the results of an experimental study of the effects of minor losses

in a rounded entrance/exit between a 2-D slot and an infinite space. The results indicate

that the flow is governed by three dimensionless parameters. It will be revealed that the
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exiting flow can, in some circumstances, expand considerably in the slot edges, resulting

in smaller losses than those reported in steady flows. As will be discussed in Section II,

calculation of minor losses from acoustic power and time-averaged pressure data requires

assumptions about the behavior of time-dependent inertial effects that may not be realistic.

Therefore, we will present results in terms of acoustic power dissipation and time-averaged

pressure. The experimental apparatus and measurement techniques are described in Section

III and a description of the results is given in Section IV.

II. TIME-AVERAGED PRESSURE AND LOSS COEFFICIENTS

Following Swift et. al1, minor loss coefficients for the blowing and suction cycle are related

to time-averaged pressure by writing the unsteady Bernoulli equation with losses that are

assumed to be constant over each half of the cycle for flow between the points a and b in

Fig. 1. It is assumed that point b is sufficiently far downstream that the velocity has become

negligible. These equations are then averaged over a full cycle. During the blowing part of

the cycle,

pa +
1

2
ρu2

a −
1

2
KBρu2

a = pb + ρ

∫ xb

xa

du

dt
dx (2)

or

pa − pb =
1

2
ρu2

a(KB − 1) + ρ

∫ xb

xa

du

dt
dx, (3)

where p is the time-varying pressure, KB is the minor loss coefficient for the blowing stroke, u

is the cross-stream average of the velocity, and the subscripts a and b refer to those locations

in Fig. 1. Similarly, during the suction stroke,

pa − pb = −1

2
ρu2

a(KS + 1) + ρ

∫ xb

xa

du

dt
dx. (4)
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Averaging over a full period T ,

∆P =
1

T

∫ T/2

0

1

2
ρu2

a(KB − 1)dt − 1

T

∫ T

T/2

1

2
ρu2

a(KS + 1)dt +
ρ

T

∫ T

0

[∫ xb

xa

du

dt
dx

]
dt.

(5)

The form of the last (unsteady) term is not generally known and will be discussed further

below. However, the integral over a cycle of the periodic function inside the brackets will go

to zero and therefore this term can be ignored here. Rearranging, we have

∆P =
ρu2

a,max

2
[(KB − 1)αB − (KS + 1)αS], (6)

where

αB =
1

Tu2
a,max

∫ T/2

0

u2
adt,

αS =
1

Tu2
a,max

∫ T

T/2

u2
adt,

(7)

∆P is the time-averaged pressure change, and ua,max = max(ua). If the flow is sinusoidal,

then αB = αS = 1/4 and

∆P =
ρu2

a,max

8
(KB − KS − 2). (8)

Without a second equation, we can only gain information on the difference between the

loss coefficients and cannot infer anything about them individually without additional as-

sumptions. Swift et. al1 obtained a second equation for KB and KS by computing dissipated

acoustic power, Ė = ∆pU , as a function of the loss coefficients, where the overbar indicates

cycle-averaging and U is the volume flow rate. They argued that time-dependent inertial

effects on pressure could be ignored since these are 90◦ out of phase with the volume flow

rate. However, this assumption relies on the inertial pressure contribution being the same

during blowing as it is during suction, which is to say that no nonlinear effects contribute to

inertial pressure. This seems unlikely at high Reynolds number, and results from the present

study indicate that this is not the case. The unsteady term can be computed using velocity
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data acquired as described in Section III between x = 0 and point b. This measurement

was performed for Lo/h = 17, r/h = 1.3, and Re = 354 (see definitions below). For this

particular case, the difference between the magnitude of the average of the unsteady term

during the outward stroke and inward stroke was on the same order as the time-averaged

pressure. Hence, we cannot accurately compute KB and KS for such a case by using Eq. (8)

and a similar equation for acoustic power dissipation ignoring the inertial term. Doing so

would yield an artificially high KB and a similarly low (and perhaps negative!) KS . The

present study also shows that the assumption of time-independent KB and KS is question-

able. Hence, we will make only slight use of Eq. (8) here, presenting results in terms of ∆P

and Ė instead of KB and KS.

Assuming that the aspect ratio of the slot is sufficiently large to ensure 2-D flow and that

the axial length of the slot is not important, the time-averaged pressure and acoustic power

dissipation are functions of r, h, ρ, T, ua,max, and the viscosity µ. Dimensional analysis shows

that this flow is governed by three independent dimensionless parameters. As will be shown

below, the parameter r/h affects the severity of the adverse pressure gradient experienced

by the exiting flow, the Reynolds number Re = ua,maxδνρ/µ based on the maximum velocity

and the viscous penetration depth δν =
√

µT/πρ affects turbulent transition and boundary

layer thickness, and Lo/h, where Lo =
∫ T/2

0
uadt, governs the vortex pair dynamics and

steady-jet tendencies.

Since it is experimentally difficult to “dial in” an exact value of Lo/h or Re, some

variation is inevitable. Hence, for “fixed” cases, each of these parameters is held to within

2% of the nominal value reported.

III. EXPERIMENTAL SETUP

The apparatus used in this study is shown schematically in Fig. 2. Oscillations are

generated by a driver system described in an earlier paper10. The test section is connected

to the drivers by a rectangular plenum. The flow channel is at the top of the test section
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and is a rectangular slot with an easily variable width h in the cross-stream direction y, a

length L of 24.1 cm in the streamwise direction x, and a depth W of 15.2 cm in the spanwise

direction into the plane of the page. Three interchangeable pairs of channel plates with

edge radii r = 0.64, 1.27, and 2.54 cm are used. The walls on the spanwise sides of the test

section are made of glass to allow flow visualization or optical measurements. In air at 80

kPa (Los Alamos atmospheric pressure), the apparatus can produce oscillating velocities up

to 50 m/s, and has a frequency range of 7 < 1/T < 120 Hz.

The flow is visualized using the double-pass shadowgraph technique11. The images are

acquired phase locked to the driving signal with a 1000×1000-pixel 10-bit CCD camera.

The necessary density gradients are generated by the addition of a small amount (less that

1% of the peak oscillating flow rate) of hydrofluorocarbon R134a introduced into the flow

below the channel. The R134a is injected in a thin sheet, normally at the spanwise center of

the plenum. Therefore, the resultant images should be interpreted similarly to dye or smoke

sheet images.

Determination of acoustic power dissipation requires measurements of the time-varying

pressure and a cross-stream average of velocity. Phase-locked velocities are measured on one

cross-stream half of the slot using a single straight hot-wire probe mounted on a traverse that

moves automatically from one measurement location to the next (Cross-stream symmetry

has been confirmed). Spacing between locations is decreased near the wall to capture the

large velocity gradients in the boundary layer. In all cases, 360 samples are acquired per

cycle at each location, and the results are phase averaged over 250 cycles.

Oscillating flow is not a typical application of hot-wire anemometry and several unique

issues must be addressed. Since the temperature inside the test section is not exactly

matched to the room temperature (the drivers generate and leak some heat into the test

section), it is necessary to simultaneously measure the time-varying temperature using a

constant-current cold wire to correct the hot-wire data based on the measured temperature.

Furthermore, since the flow is oscillatory, great care must be taken to ensure that the hot-

wire sensor is not in the wake of its supporting probe body during the inward part of the
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cycle. This is accomplished by using a standard boundary-layer probe (where the sensor is

offset laterally from the probe body) and pitching the probe body to further remove it from

the flow path. The single-sensor hot-wire probe is not capable of sensing flow direction,

and therefore its use is limited to regions where the flow direction is known to be along x

throughout the cycle. Since the flow might separate during the inward stroke for sharp-edged

slots, creating a y component of the velocity near the edges during part of the cycle, only

rounded slot edges are considered. All measurements are made at the top of the straight

portion of the slot, i.e. the bottom of the slot edge radius (see Fig. 2), a location that we call

the exit plane and define as x = 0. Because flow inward looks the same as flow outward to

the probe, the hot-wire signal is a rectified sine wave for sinusoidal flow. Processing software

detects the flow reversals and changes the velocity sign appropriately before phase averaging

is performed. The result of this procedure is ua(y, t) shown in some figures below.

Since an assumption of two dimensional flow is necessary in this study, the spanwise

uniformity of the flow was checked in a series of measurements with the traverse oriented

in the spanwise direction. The flow at the exit plane was found to be spanwise uniform,

save for the boundary layers on the spanwise edges. Fortunately, for oscillatory flow, it was

found that the spanwise boundary layers have exactly the same thickness and shape as the

cross-stream boundary layers which are measured as part of each data set. Therefore, the

effect of the spanwise boundary layers on the average velocity can be easily accounted for.

An example of phase-averaged velocity results is shown in Fig. 3. Cross-stream profiles

of the streamwise component of velocity are shown at eight points in time equal spaced

through the full cycle. The profiles during the blowing stroke have a substantially thicker

boundary layer than those for the suction stroke—the oscillatory boundary layer requires

some streamwise distance to become established, and the entering inflow has not traversed

such a distance. The accelerating flow (t/T = 0.125) tends to be laminar (as evidenced by

the maximum near the wall) while the decelerating flow (0.25 < t/T < 0.375) is turbulent,

as observed previously12. However, the profile of the turbulent oscillating flow deviates

significantly from that of steady channel flow at a similar Reynolds number. Data from
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Hussain and Reynolds13 for a Reynolds number of 23,300 based on the centerline velocity

and the half channel height are also shown in Fig. 3. Using a similar definition (and using

the peak centerline velocity) the Reynolds number of the present data is 21,400. For steady

flow, the centerline velocity is the peak of the profile and the velocity falls gradually toward

the wall until the boundary layer is reached and the rate of decrease becomes much larger.

However, for the oscillatory flow at t/T = 0.25, the velocity profile is flat at the centerline

value for 80% of the channel.

Nonlinear effects in the driving system result in some distortion of the average-velocity

waveform. These result in 2nd and 3rd harmonics that on average are 1% and 2% of the

fundamental, respectively. We believe that this small departure from sinusoidal flow does

not alter the flow physics. However, it would cause significant errors in the normalized

pressure and acoustic power if not accounted for. Therefore, pressure and acoustic power

are normalized separately over the blowing and suction strokes using the integrals of u2
a and

U3
a where Ua is the volume flow rate at location a over each half of the cycle. Since we believe

that this corrects the distortion, the data will be presented as if the flow were sinusoidal.

Pressure measurements are made simultaneously with the velocity measurements using

a series of piezo-resistive pressure transducers mounted directly into the slot block walls

at seven streamwise positions. In order to avoid errors caused by the small nonlinearity

of these transducers10, the full voltage waveforms from the transducers are digitized and a

nonlinear calibration curve is used to convert voltages to pressures. Time-averaged pressure

measurements upstream of x = 0 are extrapolated to obtain an exit-plane value.

Referring to Eqs. (3) and (4), we see that changes in pressure between two points can

come from three sources: 1) conversion of kinetic energy to flow energy due to streamwise

velocity differences, 2) minor losses, and 3) time-dependent inertial effects. The time-varying

pressure difference between the various measurement stations and the ambient and volume

flow rate measured at x = 0 are shown in Fig. 4 for a representative case. It should be

noted that compressible effects upstream of x = 0 are small in all cases reported here, so the

volume flow rate can be assumed independent of x inside the slot. The thin solid trace is
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the pressure measured below the slot blocks. The velocities above and below the blocks are

similar, so there is little contribution from kinetic energy conversion to the pressure below the

blocks. Pressure oscillations are dominated by linear inertial effects in the slot, as is evident

from the fact that the sinusoidal pressure leads the volume flow rate by almost 90◦. The

deviation from 90◦ is due to minor losses at both ends. In addition, the pressure amplitude is

somewhat greater than the ordinary inertial pressure difference because of the minor losses

(which generate pressure differences that are about half of the inertial pressure difference).

Near the top of the slot (x/h = −1.1), the length of the slug of fluid between the pressure

sensor and the ambient is small while the velocity is much larger than in the ambient, and

thus the pressure trace reflects only the minor losses and kinetic-energy conversion. At the

lower end of the slot (e.g. x/h = −6.9), the pressure fluctuations must accelerate all the slot

fluid above this location and the resultant pressure trace is a mixture of all three of these

effects.

IV. RESULTS

A. Flow Visualization

We begin with flow visualization. In Fig. 5, a series of instantaneous schlieren images

acquired at 12 points in time equally spaced through the blowing cycle are shown for a

case with Lo/h = 20, r/h = 1.0, and Re = 634. The image domain is 4.2h wide and 3.9h

high. The marked fluid does not arrive in the visualized domain until t/T = 0.2. Shortly

thereafter, a vortex pair is observed forming along the rounded walls of the slot edge. The

locations of the vortex cores indicate that the flow has expanded considerably during the

vortex pair formation process. Somewhat later in the cycle, the vortex pair leaves the exit

plane and is convected downstream (t/T = 0.276). The turbulent vortex pair grows quickly,

and a turbulent “starting jet” forms behind it14. A more subtle but surprising effect is

the separation behavior near the exit radius during the latter part of the blowing stroke.
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The detachment point that is initially near x = 0 moves abruptly to 45◦ around the exit

radius on both sides of the slot after the start of the decelerating part of the blowing stroke

(t/T = 0.301). The flow remains attached downstream of x = 0 for the remainder of

the blowing stroke, although the images indicate significant fluctuations in the detachment

point. As will be shown below, the attachment past x = 0 results in deceleration of the flow,

pressure recovery, and a reduced minor loss coefficient.

B. Pressure

The effects of each of the three parameters on the time-averaged pressure difference

between the slot and the infinite space will be examined by fixing two parameters and

varying the third. Pressure is scaled such that the normalized value is equal to KB if

KS ≈ 0 [see Eq. (8)] and KB is independent of time during the blowing stroke. For the sake

of describing the pressure data, it will be assumed that the suction loss is indeed negligible,

as justified by the large r/h values used here.

The effect of Lo/h on the time-averaged pressure will be examined first. For very small

stroke length (Lo/h < 0.01) the oscillations do not cause separation on the outward stroke,

and therefore KB is expected to be very small. As the stroke length becomes very large,

which for a fixed velocity amplitude is equivalent to a very small frequency, the oscillatory jet

should approach steady-jet behavior, for which KB ≈ 1. These expectations are confirmed

in Fig. 6a, where the dimensionless stroke length is varied with dimensionless radius and

Reynolds number fixed (three different radii and two Reynolds-number cases are shown).

These data verify that in every case the loss coefficient is small at low Lo/h and grows with

Lo/h. In addition, the various cases demonstrate that the loss at a given stroke length is

smaller for a larger dimensionless radius and larger Reynolds number. It is also evident that

the Reynolds number has a very strong effect on ∂KB/∂(Lo/h).

Similarly, the effect of the dimensionless radius is determined by fixing the Reynolds

number at two values (nominally Re = 658 and 931) and the stroke length at Lo/h = 30.
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In order to achieve the range of r/h shown, all three sets of slot blocks are used. The

data are plotted in Fig. 6b, and several trends are apparent. The blowing loss decreases

monotonically with r/h. In addition, the larger Reynolds number cases have smaller losses.

The small discontinuities between the various sets of data with matched Reynolds number

indicate that an additional dimensionless parameter is affecting the results. There are two

possibilities: the slot aspect ratio W/h, or the stroke length relative to the slot length, Lo/L.

Future researchers may want to control these parameters more carefully. Since, as stated

in Section III, spanwise uniformity at the exit was confirmed for a small-aspect-ratio case

(W/h = 6.7), we conjecture that the increase in the loss for smaller aspect ratios can only be

due to spanwise nonuniformity of the flow at x > 0. Flow visualization (not shown) confirms

that the downstream flow expands more in the y direction in the spanwise center than at

the spanwise edge during the blowing stroke. The slot length can impact the results only

if Lo/L > 1 since the maximum entrance length over which an oscillatory flow can develop

is Lo (the flow reverses after traversing this distance). For slots that are much shorter than

Lo, the channel flow boundary layer will not develop fully. For most of the present data,

including the cases in Fig. 6b, L < Lo. The cross-stream velocity profiles at the peak of the

blowing (t/T = 0.25) for cases with identical r/h, Lo/h, and Re but different Lo/L are found

to have only minor differences in their velocity profiles. Hence, It seems that oscillatory-flow

entrance lengths are significantly less that Lo, although this is currently an open question

and worthy of further study.

The Reynolds-number dependence is shown in Fig. 6c. As stated in the discussion of

Fig. 6a above, smaller dimensionless stroke lengths result in smaller loss coefficients at fixed

Reynolds number. While at very small Re the decrease of KB is more than linear, it becomes

linear at larger Re for each of the stroke lengths and Reynolds numbers considered here.

The large variation in the blowing loss at small Re is likely due to changes in the velocity

profile shape associated with the transition from laminar to turbulent flow. This transition

has been reported to occur near Re = 550 for flow in smooth circular pipes12. Evidence for

this hypothesis is provided by velocity profiles from two of the cases in Fig. 6c, shown in
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Fig. 7. The higher-Re profile has a substantially thinner boundary layer than the smaller-Re

case has. This can potentially affect the loss coefficient in two ways: 1) the larger departure

from a uniform profile in the smaller-Re case will result in a larger loss coefficient for the

same reason that it does for steady flow, as noted in Section I, and 2) the thicker boundary

layer in the smaller-Re case will likely separate from the edge radius sooner and result in a

smaller pressure recovery and a larger minor loss.

The latter effect can be seen in the pressure traces shown in Fig. 8. Pressure and velocity

are shown for three cases, including two from Fig. 6c and an additional case with the smaller

of these two Reynolds numbers, the same Lo/h, and a smaller r/h. The average velocities are

nearly identical and sinusoidal. For the entire suction stroke and part of the blowing stroke,

the pressures are also very similar. However, before the peak of the blowing stroke (t/T =

0.25), the effects of Re and r/h become apparent. For r/h = 1 and Re = 905 (Fig. 8a), there

is a large pressure recovery [p(t/T = 0.185)/(ρu2
a,max/2) = −0.44]. Reducing the Reynolds

number to 634 results in a decrease in the pressure recovery [p(0.190)/(ρu2
a,max/2) = −0.38,

Fig. 8b]. The reduction of r/h from 1.0 to 0.625 results in even less pressure recovery.

An additional flow visualization study confirmed that a larger radius or a larger Reynolds

number results in increased expansion of the exiting flow, and therefore a smaller normalized

time-averaged pressure (and presumably a smaller blowing loss coefficient). As noted above,

Reynolds number also affects the velocity profile shape, which in turn affects the kinetic

energy flowing out of the channel. The profile-shape effect can be removed from the pressure

data by using a velocity scale that is based on the cross-stream average of the square of

velocity. However the application of a loss coefficient to predict ∆P would require knowledge

of the velocity profile. Since future researchers may not know the profile shape, this approach

has not been used for data presentation here. Nevertheless, using this velocity scale reveals

that as r/h becomes small, the effect of Re is diminished. Therefore, for a sharp-edged exit,

it is likely that the losses based on the profile-based velocity scale will be a function of Lo/h

only.
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C. Acoustic Power Dissipation and Effectiveness

By assuming that all of the power flowing past the exit is lost to viscous dissipation, the

variations of the normalized acoustic power dissipation with each of the three parameters

and over the same parameter space reported in Fig. 6 are shown in Fig. 9. The effect of

Lo/h is shown in Fig. 9a. Most of the data collapse on a single curve with the exception of

the case with the very large radius and small Re, which has more power dissipation than

the rest, including other small-Re cases. Also of note is the behavior near Lo/h = 7. This

value of stroke length was identified by Smith and Swift15 as the boundary between time-

averaged “jetting” behavior and reingestion of the vortex pairs generated during the blowing

stroke. Clearly acoustic power dissipation increases as the reingestion process becomes more

dominant (e.g., as Lo/h becomes smaller). It is also interesting to note that no such effect

is detectable in the pressure data for the same cases shown in Fig. 6a.

In contrast to the time-averaged pressure, acoustic power dissipation is a weak function

of r/h, as can be seen in Fig. 9b. In some parts of the parameter space, the behavior is not

monotonic. It should be noted that a representative error for these data is ±0.0025.

Acoustic power dissipation is shown in Fig. 9c to decrease with increasing Reynolds

number. Data for identical Lo/h and similar r/h are more or less collapsed, as is to be

expected given the weak r/h effects discussed above. It also appears that the sensitivity of

the power dissipation to Re decreases for increasing stroke length for 20 ≤ Lo/h ≤ 50.

As stated in Section I, minor losses can be used to create time-averaged pressure dif-

ferences to block streaming motions or to convert oscillating flow to steady flow16. Ideally,

we would create this time-averaged pressure difference with minimal acoustic power dissipa-

tion. It is natural to form an “effectiveness” parameter that is the ratio of the dimensionless

time-averaged pressure difference to the dimensionless acoustic power dissipation:

η =
2 + 8∆P/ρu2

a,max

Ė/ρAu2
a,max

. (9)
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Assuming loss coefficients that are constant during the blowing and suction parts of the

cycle, η = 3π when KB � KS
16.

Using the data from Figs. 6 and 9, η is plotted versus the same three dimensionless

parameters in Fig. 10. These data demonstrate that the effectiveness decreases with in-

creasing r/h or Re. It is shown above that increasing either of these parameters improves

the pressure recovery during the outward motion. A lack of this recovery is responsible for

the time-averaged pressure difference desirable in some applications, so it is no surprise that

improved pressure recovery can have a detrimental effect on the effectiveness. One might

expect that at sufficiently small Re (e.g. laminar flow), the effectiveness would increase with

r/h since the dissipation due to the inward flow is reduced with no impact on the pressure

recovery during the blowing part of the cycle. No evidence of this is found in the present

data. Although the effectiveness increases with stroke length for small (laminar) Re, it is a

very weak function of Lo/h at larger Reynolds numbers.

V. CONCLUSIONS

The effect of minor losses on the time-averaged pressure and acoustic power dissipation

generated by oscillating flow in a rounded entrance/exit between a rectangular channel

and an infinite space has been investigated experimentally. Both of these quantities are

functions of three dimensionless parameters: Lo/h, r/h, and Re. Cases with very small

dimensionless stroke lengths tend toward linear oscillatory behavior and cases with large

stroke lengths tend toward steady jet flow. Increasing the exit radius reduces the adverse

pressure gradient experienced by the exiting flow and allows the flow to expand more in the

cross-stream direction near the exit, resulting in smaller losses. This effect can be enhanced

by increasing the Reynolds number. The Reynolds number also governs the transition

from laminar to turbulent flow. Laminar flow has a thicker boundary layer and thus has

larger loss coefficients (due to the velocity scale) and less tendency to expand and recover

pressure (which also results in larger losses). It is also found that nonlinear inertial effects
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prevent one from making the necessary assumptions to use the equation for acoustic power

dissipation to determine the blowing and suction loss coefficients separately. A parameter

is defined that estimates the effectiveness of the sudden expansion for generating time-

averaged pressure differences with minimal acoustic power dissipation. It is found that the

effectiveness increases with decreasing r/h and Re, and increases with increasing Lo/h for

laminar flow.
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FIGURE CAPTIONS

FIG. 1. Schematic of transition between a flow channel and an open space which exhibits
entrance/exit flow losses. The loss coefficient during blowing is KB and that during the
suction is KS.

FIG. 2. Schematic of test section. The top of the test section exits to ambient conditions.

FIG. 3. Profiles of the streamwise component of velocity at x = 0, at eight equal incre-
ments in time through a full cycle, for Lo/h = 20, r/h = 1.0, and Re = 905, (Reh =
ua,maxh/2ν = 21, 400). The start of the cycle (t/T = 0.0) is defined as the first time step
with the volume flow rate > 0. (•) t/T = 0.0, (�) t/T = 0.125, (�) t/T = 0.250, (�) t/T =
0.375, (◦) t/T = 0.500, (�) t/T = 0.625, (♦) t/T = 0.750, (�) t/T = 0.875, (�) data from
Hussain and Reynolds13 for 2-D steady channel flow with Reh = uclh/2ν = 23, 200, where
ucl is the centerline velocity.

FIG. 4. Volume flow rate and pressure at various locations upstream of the exit plane for
Lo/h = 20, Re = 905, r/h = 1.0. Volume flow rate ( ), pressure at x/h = −1.1 (— —),
x/h = −2.1 (– –), x/h = −3.1 (- - -), x/h = −4.4 (· · ·), x/h = −4.9 (— · —), x/h = −5.9
(— – —), x/h = −6.9 (— · · · —), in plenum (—).

FIG. 5. Schlieren images taken at 12 equally-spaced phase-points during blowing cycle
(0.2 < t/T < 0.48, Lo/h = 20, Re = 634, r/h = 1.0).

FIG. 6. Time-averaged pressure difference between x = 0 and the ambient as a function
of (a) stroke length, (b) dimensionless radius with Lo/h = 30, and (c) Reynolds number.
The dashed line at 1 is the result16 if KB = 1 and KS = 0.

FIG. 7. Profiles of streamwise velocity at t/T = 0.25 for Lo/h = 20, r/h = 0.833, and
(—) Re = 416, (- - -)Re = 587.

FIG. 8. Normalized cross-stream-average velocity and normalized pressure for Lo/h = 20
and a) Re = 905, r/h = 1.0, b) Re = 634, r/h = 1.0, and c) Re = 645, r/h = 0.625.

FIG. 9. Acoustic power as a function of (a) stroke length, (b) dimensionless radius with
Lo/h = 30, and (c) Reynolds number. The dashed line at 1/3π is the result16 if KB = 1
and KS = 0, and time-dependent inertial effects are ignored.

FIG. 10. The effectiveness η as a function of (a) stroke length, (b) dimensionless radius,
and (c) Reynolds number. The dashed line indicates a value of 3π.
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FIG. 1. Schematic of transition between a flow channel and an open space which exhibits

entrance/exit flow losses. The loss coefficient during blowing is KB and that during the suction is
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FIG. 2. Schematic of test section. The top of the test section exits to ambient conditions.
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FIG. 3. Profiles of the streamwise component of velocity at x = 0, at eight equal increments in

time through a full cycle, for Lo/h = 20, r/h = 1.0, and Re = 905, (Reh = ua,maxh/2ν = 21, 400).

The start of the cycle (t/T = 0.0) is defined as the first time step with the volume flow rate > 0.

(•) t/T = 0.0, (�) t/T = 0.125, (�) t/T = 0.250, (�) t/T = 0.375, (◦) t/T = 0.500, (�) t/T = 0.625,

(♦) t/T = 0.750, (�) t/T = 0.875, (�) data from Hussain and Reynolds13 for 2-D steady channel

flow with Reh = uclh/2ν = 23, 200, where ucl is the centerline velocity.

22



-0.1

0

0.1

-1000

-500

0

500

1000

0 0.25 0.5 0.75 1

U
1
 [m

3
/s

] ∆
P [Pa]

t/T

FIG. 4. Volume flow rate and pressure at various locations upstream of the exit plane for

Lo/h = 20, Re = 905, r/h = 1.0. Volume flow rate ( ), pressure at x/h = −1.1 (— —),

x/h = −2.1 (– –), x/h = −3.1 (- - -), x/h = −4.4 (· · ·), x/h = −4.9 (— · —), x/h = −5.9

(— – —), x/h = −6.9 (— · · · —), in plenum (—).

23



FIG. 5. Schlieren images taken at 12 equally-spaced times during blowing half of the cycle

(0.2 < t/T < 0.48, Lo/h = 20, Re = 634, r/h = 1.0).
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FIG. 6. Time-averaged pressure difference between x = 0 and the ambient as a function of (a)

stroke length, (b) dimensionless radius with Lo/h = 30, and (c) Reynolds number. The dashed

line at 1 is the result16 if KB = 1 and KS = 0. The result would be zero if KB = KS .
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